RESOURCE ALLOCATION USING REINFORCEMENT LEARNING

Chethan Nagaraj
Chethan187@gmail.com

Manu Joshi
Manu.Joshi@dell.com
The Dell Technologies Proven Professional Certification program validates a wide range of skills and competencies across multiple technologies and products.

From Associate, entry-level courses to Expert-level, experience-based exams, all professionals in or looking to begin a career in IT benefit from industry-leading training and certification paths from one of the world’s most trusted technology partners.

Proven Professional certifications include:

- Cloud
- Converged/Hyperconverged Infrastructure
- Data Protection
- Data Science
- Networking
- Security
- Servers
- Storage
- Enterprise Architect

Courses are offered to meet different learning styles and schedules, including self-paced On Demand, remote-based Virtual Instructor-Led and in-person Classrooms.

Whether you are an experienced IT professional or just getting started, Dell Technologies Proven Professional certifications are designed to clearly signal proficiency to colleagues and employers.

Learn more at www.dell.com/certification
Table of Contents

Abstract ... 4
Impediments to Migrating to Public Cloud ... 4
What is Dynamic Resource Allocation? ... 4
HPC workloads with complex communication paths on cloud platform ... 5
What a bare-metal cloud platform for latency-sensitive HPC applications brings to the customer 6
Trade-off Between Private and Public Cloud ... 6
Hybrid Cloud Storage Capacity Optimization ... 7
Hybrid Cloud Compute Capacity Optimization ... 8
How are we managing the above solutions through Reinforcement Learning? 8
Problem Solving Approach .. 9
Temporal Difference Learning .. 10
Hybrid Cloud Management Architecture based on Reinforcement Learning 10
Reinforcement Learning: Examples ... 11
Reinforcement Learning vs. the other ML models .. 12
Conclusion ... 12
References ... 12

Disclaimer: The views, processes or methodologies published in this article are those of the authors. They do not necessarily reflect Dell Technologies’ views, processes or methodologies.
Abstract

Cloud Computing has been a trending technology for a few years supporting computational services over internet. But ever since its adoption, cloud’s consistent challenge is in its dynamic resource allocation. The existing cloud model details the online and offline algorithms used to decide the dynamic resource allocation. The goal is to have a dynamic resource allocation framework that aligns to cloud data management’s objective of maximizing revenue with minimum cost. This encourages both consumers and cloud providers not only with energy-efficient power usage but also high CPU utilization.

This article discusses the impediments of migrating to Public Cloud, what is dynamic resource allocation, HPC workloads with complex communication path on cloud platform, and the benefits of bare metal platform for latency-sensitive applications. We shed light on trade-offs (compute balance) between Private and Public Cloud, how existing resources can be leveraged, reinforcement learning (RL) solutions including a study on hybrid cloud computing capacity optimization framework. Understanding RL architecture, problem solving approach, learning structure and Hybrid Cloud Management Architecture framework are also explored. Also given are a few RL implemented gaming examples on how it makes an impact. Lastly, we shall do the comparisons of RL with other Machine Learning (ML) approaches.

Impediments to Migrating to Public Cloud

Here is the list of barriers to Public Cloud investment by organizations.

<table>
<thead>
<tr>
<th>%</th>
<th>Barriers to investing in cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>65%</td>
<td>Short-Term targets (revenue impact)</td>
</tr>
<tr>
<td>63%</td>
<td>Incompatibility with traditional network security tools</td>
</tr>
<tr>
<td>62%</td>
<td>Compliance concerns</td>
</tr>
<tr>
<td>50%</td>
<td>Data loss and leakage risks</td>
</tr>
<tr>
<td>49%</td>
<td>Organization culture (inertia)</td>
</tr>
<tr>
<td>43%</td>
<td>Lack of human resource or expertise</td>
</tr>
</tbody>
</table>

Figure 1: Barriers to investing in cloud

What is Dynamic Resource Allocation?

Dynamic Resource Allocation (DRA) is used in cloud computing environments. It is considered as an important optimization technique to achieve maximum resource efficiency and scalability, as well as load balancing, the effective distribution of loads among back-end virtual machines.

DRA enables the business to be more flexible and agile in resource management, particularly in provisioning resources by allowing users to scale-up and scale-down the allocation as per their needs through auto-balance methodologies. Due to the dynamic nature of cloud environments adoption of on-demand resource allocation technique is very much needed and is beneficial in terms of cost for end users and offers an efficient resource handling for cloud providers.
HPC workloads with complex communication paths on cloud platform

This example considers the BloodFlow tool used to monitor the blood flow in various blood vessels and to measure cardiac output.

The study begins by analyzing the application stability on Marconi from Bloodflow tool data on HPC environments. HPC continues to scale up to 512 nodes whereas cloud scales to 32 nodes.

Figure 3 shows the runtimes of a pair of MPI processes on a pair of remote, single processor nodes indicating minor overhead of network communication on application performance. This impact will be lower on the bare metal hosts supporting virtualization. Other overheads such as data transfer rates to remote cloud platforms can be an issue, hence it is recommended that for highly data-intensive tasks, local platforms are the best solution. The above representation depicts only the runtime; it does not include the provisioning part. This approach helps in comparing the computation time on cloud vs. non-cloud environments.

As our focus is on platforms supporting HPC applications, a significant amount of computation involved in provisioning part has been excluded from this discussion.
What a bare-metal cloud platform for latency-sensitive HPC applications brings to the customer

1. Customers can reduce the time to run the workloads from days to hours to minutes
2. Dedicated hardware as a service offers flexibility, scalability and efficiency without the drawbacks of a shared server
3. A bare-metal cloud model also enables on-demand usage and metered hourly billing with physical hardware which was sold earlier on a fully dedicated basis
4. Bare-metal cloud is the best fit for bursty I/O-heavy workloads. Ideal use cases include media encoding and render farms which are both periodic and data-intensive in nature.

Trade-off Between Private and Public Cloud

![Figure (4) Compute Demand](image)

![Figure (5)a: Price vs. utilization](image) ![Figure (5)b: Price vs. Optimal Capacity](image)
Total Cost = Private Cost + Public Cost

The best trade-off between Private and Public Cloud compute capacity is neither All Public or All Private. Figure 7 illustrates leveraging the existing resources to gain the benefits that on-premises and public cloud have to offer, while simplifying use and operations.

Hybrid Cloud Storage Capacity Optimization

![Hybrid Cloud Storage Diagram](image-url)

Figure (7): Leveraging existing resources
Hybrid Cloud Compute Capacity Optimization

How are we managing the above solutions through Reinforcement Learning?

Architecture

Figure (8): Compute Capacity Optimization

Figure (9): RL architecture overview
Algorithm 1: Simple Deep Q Learning

1. Initialize replay memory D
2. Initialize action-value function Q with random values θ
3. $s = initial states$
4. for $episode = 1$ to M
 5. Observe state s (by collecting metrics with the monitor module)
 6. With probability ϵ select a random action a_t (add/remove VM using coordinator module) otherwise select $a_t = \arg \max_a Q(s, a_t)$
 7. Observe reward r and new state s' (by collecting metrics with the monitor module)
 8. Store sequence (s, a, r, s') at the experience replay buffer
 9. Sample I number of past experiences $<s, a, r, s'>$ from our memory buffer and training our agent with them, by calculating the Q targets (tt) for each minibatch transitions
 10. $tt = \begin{cases}
 rr & \text{if } ss' \text{ is a terminal state} \\
 rr + \gamma \max_a' Q(ss', aa') & \text{for non terminal } ss'
 \end{cases}$
 11. train the Q network using gradient descent with $(tt - Q(ss, aa))^2$ as loss
 12. $s = s'$
end for

Benefits

- Continuous improvement via Reinforced Learning
- Simultaneous allocation optimization of resources
- Future-Proof

Problem Solving Approach

Think of DNN as a black box. Taking game-state as input returns the Q-value – like Q-learning does. However, we are now trying to recognize the patterns instead of just mapping every state to its best action. This wouldn’t be possible with higher state spaces. For neural network to predict we must feed
the pairs of input and output. Then neural network would train on the data to approximate the output based on the input by updating the parameters iteratively.

Temporal Difference Learning

\[
V(S_t) = V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))
\]

![TD Learning structure](image)

Temporal Difference (TD) learning is the central theme of reinforcement learning. TD learning is a combination of Monte Carlo (MC) and Dynamic Programming (DP) ideas. Like Monte Carlo methods, TD can learn directly from the experiences without prior knowledge on the domain and, as with Dynamic Programming, updates the estimates based on the learned estimates. However, unlike MC methods, TD does not wait for the outcome to update the estimates.

Hybrid Cloud Management Architecture based on Reinforcement Learning

![Hybrid Cloud Based Architecture](image)

Figure (11): TD Learning structure

Figure (12): Hybrid Cloud Based Architecture
Reinforcement Learning: Examples

Starting from random play, given no domain knowledge except the rules of the game, Alpha zero achieved within 24 hours a superhuman level of play in the games of chess, shogi and Go and convincingly defeated a world-champion program in each play.

Fig 13: (a) Performance of AlphaZero in chess compared to StockFish (b) Performance of AlphaZero in Shogi when compared with Elmo (c) Performance of AlphaZero in Go when compared with AlphaGo Zero and AlphaGo Lee

Statistics of the Games

<table>
<thead>
<tr>
<th></th>
<th>Chess</th>
<th>Shogi</th>
<th>Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini-batches</td>
<td>700k</td>
<td>700k</td>
<td>700k</td>
</tr>
<tr>
<td>Training Time</td>
<td>9h</td>
<td>12h</td>
<td>34h</td>
</tr>
<tr>
<td>Training Chess</td>
<td>44 million</td>
<td>24 million</td>
<td>21 million</td>
</tr>
<tr>
<td>Thinking Time</td>
<td>800 sins</td>
<td>800 sins</td>
<td>800 sins</td>
</tr>
<tr>
<td></td>
<td>40ms</td>
<td>80 ms</td>
<td>200 ms</td>
</tr>
</tbody>
</table>

Table (1): Selected statistics of AlphaZero training in Chess, Shogi and Go
Reinforcement Learning vs. the other ML models

<table>
<thead>
<tr>
<th>Learning Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsupervised Learning</td>
<td>Finds hidden structures in data, such as in grouping</td>
</tr>
<tr>
<td>Supervised Learning</td>
<td>A Subject Matter Expert (or historical data) labels a subset of data w/ the right action (classification) to take, such as in personal credit risk analysis</td>
</tr>
<tr>
<td>Evolutionary Algorithms</td>
<td>- Action policies are static or random.</td>
</tr>
<tr>
<td></td>
<td>- Populations are refined towards a global/local optimum.</td>
</tr>
<tr>
<td></td>
<td>- Ex: Asynchronous Teams and Genetic Algorithms</td>
</tr>
<tr>
<td>Reinforcement Learning</td>
<td>- No training dataset, so in Training followed by Inference</td>
</tr>
<tr>
<td></td>
<td>- Learn as you go</td>
</tr>
</tbody>
</table>

Table (2): RL and ML comparisons

Conclusion

This work explored the concept of Dynamic Resource in Cloud Computing and its benefits while understanding the trade-off between private and public clouds as there is no sole winner where the business needs to balance between the two. The research also sought an understanding about the cost of cloud services for consumers. This article will help readers gain technical knowledge and discover opportunities where business can leverage their existing resources and its benefits for cloud services. We delved into hybrid cloud’s storage and compute optimization techniques and discussed implications of RL techniques into hybrid cloud management architecture that empower the business to aptly handle data center infrastructure.

References

https://www.novatec-gmbh.de/en/blog/deep-q-networks/
Dell Technologies believes the information in this publication is accurate as of its publication date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” DELL TECHNOLOGIES MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying and distribution of any Dell Technologies software described in this publication requires an applicable software license.

Copyright © 2020 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners.